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Abstract: To address the inherent challenges of deep space exploration, such as communication de-
lays and the unpredictability of spacecraft environments, this study focuses on enhancing spacecraft 
adaptability and autonomy, which are essential for Autonomous Space Scientific Exploration. A piv-
otal aspect of this endeavor is the advancement of spacecraft task scheduling, which is integral to 
increasing spacecraft autonomy. Current research in this domain predominantly revolves around 
mission timing planning and is primarily executed from ground stations. However, these plans of-
ten lack the granularity required for direct implementation by spacecraft. In response, our study 
proposes an innovative approach to augment spacecraft autonomy, introducing a method that ar-
ticulately describes mission objectives and resource information. We designed a novel hierarchical 
task network-timeline (HTN-T) algorithm, an amalgamation of the HTN scheduling method and 
the distinctive elements of existing research. This algorithm addresses time constraints through hor-
izontal and vertical expansions, building upon the resolution of logical constraints found in conven-
tional planning methods. Furthermore, it introduces a priority-based strategy for resolving resource 
conflicts in spacecraft tasks. This algorithm is substantiated through validation, including proof-of-
principle demonstrations and assessments within a Space–ground Collaborative Management and 
Control System encompassing both ground and spacecraft operations. The findings indicate that 
our proposed algorithm achieves high rates of scheduling success and operational efficiency within 
a feasible timeframe, thus effectively navigating the complexities of autonomous spacecraft task 
scheduling. 

Keywords: hierarchical task network; autonomous scientific space exploration; autonomous space-
craft; task scheduling; space data systems 
 

1. Introduction 
The advancement of deep space exploration has posed significant challenges to tra-

ditional spacecraft operation modes. On the one hand, longer terrestrial and satellite com-
munication distances cause long communication delays, which are more unfavorable for 
real-time control. On the other hand, the environment of deep space is uncertain, which 
makes it more difficult for spacecrafts to make convincing decisions in this environment. 
It is foreseeable that, over time, the future of deep space exploration will transform from 
“target-specific Scientific Space Exploration” to “Autonomous Scientific Space Explora-
tion.” Such autonomy requires spacecrafts to achieve “self-adaptation” to the environ-
ment, scientific goals, and their state. 

Autonomous Space Scientific Exploration (ASSE) is a new concept that has become 
popular recently. It is a process wherein spacecrafts undertake scientific exploration mis-
sions, whether known or unknown. In this process, the spacecraft can be independent of 
the ground and based on some limited onboard capabilities, resources, and knowledge, 
make its own decisions. The core of this “self-adaptation” is using modern control 
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technology to determine the spacecraft’s operation strategy based on telemetry data and 
the environment, independently of ground operators. Simultaneously, spacecrafts must 
maintain high precision, exceptional stability, robust adaptability, unparalleled reliability, 
and an extended operational life. The capabilities of “Autonomous Scientific Space Explo-
ration” include the autonomous management of resource information, mission decision 
making, planning and scheduling, self-discovery of task objectives, self-monitoring of on-
orbit operation status, autonomous repair, etc. The research in task decision making, plan-
ning, and scheduling will be significant because of its close relationship to realizing the 
spacecraft’s scientific objectives. 

Building on the previous analysis, there is a pressing need to develop an onboard 
autonomous task scheduling method specifically tailored for spacecraft payloads, predi-
cated on the concept of system-level autonomy. System-level autonomy means the auton-
omous capability of a spacecraft is not confined to specific payloads or functions but rather 
involves the integrated coordination and execution of various capabilities. It leverages the 
current environment and relevant engineering parameters to fulfill the spacecraft’s mis-
sion objectives. System-level autonomy requires the spacecraft to independently execute 
the appropriate command sequences according to the external environment after know-
ing the objectives, i.e., the spacecraft’s traditional “behavior-driven” operational mode to 
a more sophisticated “objective-driven” paradigm. 

The motivation of this research is to work on solving the time and resource descrip-
tion problem of hierarchical task networks onboard, designing corresponding algorithms 
to maximize the execution efficiency of tasks and the optimal allocation of resource con-
flicts, and realizing onboard autonomous task scheduling for spacecraft payloads. This 
will enable the spacecraft and its payload to autonomously complete the operations ac-
cording to the environment and task objectives. 

Based on this, the main contributions of this paper are as follows: 
• To construct the spacecraft’s autonomous capability, we designed a method describ-

ing the objectives. 
• Utilizing the hierarchical task network (HTN) method, we designed a hierarchical 

task network-timeline (HTN-T) method based on the spacecraft intelligence architec-
ture, which addresses both the logical and time constraints in spacecraft task sched-
uling through horizontal and vertical extensions. 

• We also crafted a priority-based conflict resolution strategy for managing spacecraft 
task resources, aiming at their optimal allocation. 

• Through simulation testing, we verified the effectiveness of the spacecraft’s autono-
mous task-scheduling algorithm. 

2. Related Work 
With the popularization of autonomous systems and the increased demand for space-

craft autonomy, research on spacecraft task planning and scheduling is rising, and both 
are of great significance. Initially, this planning was accomplished using methods such as 
first-order logic [1] and scenario algorithms [2]. Subsequently, the Stanford Research In-
stitute Problem Solver (STRIPS) planning description was proposed by Nillson [3], mark-
ing a pivotal advancement. Influenced by STRIPS, McDermott et al. introduced the Plan-
ning Domain Definition Language (PDDL) in 1998 [4], further enriching the field. The Au-
tomated Scheduling and Planning ENvironment (ASPEN) system [5] of the National Aer-
onautics and Space Administration (NASA) represented another leap forward. It con-
structs a task description model based on iterative restoration. This system has been de-
ployed on satellites, including EO-1, and other satellites implemented software for imag-
ing scheduling systems based on ASPEN [6]. Building on ASPEN’s foundation, Chien et 
al. partially integrated it with the greedy algorithm, enhancing the description methodol-
ogy [7]. The French Space Agency’s Pleiades satellite employs the Autonomy Generic Ar-
chitecture—Tests and Application (AGATA) for task planning, which can be carried out 
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on board with a timeline-based constraint network approach. [8] NASA has developed 
the Extensible Uniform Remote Operational Planning Architecture (EUROPA) system and 
the Mixed-Initiative Activity Plan Generator (MAPGEN), which were applied to the Mars 
Exploration Missions Courage and Opportunity [9]. Similarly, the Spike system, built on 
CSP [10], has been utilized for the surface roving missions of the Mars rovers Courage and 
Opportunity, as well as servicing the Hubble Telescope. This evolution underscores the 
dynamic progress of onboard planning and its critical role in advancing ASSE. 

Recent studies on task scheduling and integrating artificial intelligence and intelli-
gent algorithms have seen a notable increase. These studies leverage a variety of methods, 
including heuristic algorithms, artificial neural networks (ANNs), deep reinforcement 
learning (DRL), semiotics-based AI, and so on. For instance, Shi Janshun et al. developed 
a deep deterministic policy gradient (DDPG) algorithm for space station mission replan-
ning based on DRL. This method enables finding near-optimal solutions through the al-
gorithm’s continuous evolution, overcoming the constraints of preset conflict resolution 
strategies [11]. Liu Yang et al. also devised a priority-based scheduling algorithm for load-
level tasks, accounting for both task-resource limitations and spacecraft conditions, in-
cluding external conditions, power supply, and storage [12]. Yao Min et al. created a mis-
sion flow autonomous planning system, tailored to spacecraft payload and task require-
ments [13]. NASA designed the Framework for Robust Execution and Scheduling of Com-
mands Onboard (FRESCO), which achieves the system-level autonomy of the spacecraft, 
and the Arcsecond Space Telescope Enabling Research In Astrophysics CubeSat work-
station [14]. Furthermore, Jun Liang et al. designed a precedence-rule-based heuristic for 
satellite onboard activity planning. It is used in the description of onboard activity domain 
knowledge and aimed at reducing the completion time for onboard activities [15]. 

Synthesizing the above research status of spacecraft task planning and scheduling, 
the following features can be summarized: 
• Most of the task planning and scheduling methods are overwhelmingly focused on 

sequencing planning. For example, temporal sequencing planning for the shooting 
locations of imaging satellites, path planning for the flight trajectories of spacecrafts, 
and so on. The planning results of these methods are more granular; they cannot be 
directly executed as spacecraft commands without further processing. Therefore, this 
approach cannot be directly applied to the problem of autonomous mission planning 
onboard spacecrafts. 

• Moreover, the existing approach necessitates uploading the scheduling results to the 
spacecraft through the communication link instead of executing the planning process 
directly onboard. These methods are still challenging when it comes to solving the 
spacecraft communication delay problem in deep space exploration. 

• In addition, many spacecraft mission planning and scheduling studies are isolated 
studies that are not integrated with the spacecraft software architecture. In the spe-
cialized field of spacecraft intelligence architecture, Lyu L. et al. have put forward an 
innovative spacecraft intelligence software architecture [16]. Autonomous mission 
scheduling methods for spacecrafts need to be adequately supported by similar ar-
chitectures in order to realize their potential in practical scientific exploration. 
The HTN approach is a common solution for task objective-based scheduling. This 

method is an artificial intelligence technique for solving domain planning problems [17]. 
Its advantages, including sufficient interpretability, modularity, maintainability, and 
adaptability, establish it as an effective tool for solving complex task planning and deci-
sion-making problems. The most significant feature of the method is its domain modeling 
capabilities—the ability to complete modeling and solving in alignment with real-world 
scenarios. 

The HTN has been successfully applied in various objective-based aerospace fields, 
underscoring its effectiveness in sophisticated planning tasks [18]. However, existing 
HTN descriptions tend to focus primarily on the sequential logical relationship between 
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tasks; the resource conflict and time description of tasks are relatively lacking. Meanwhile, 
the challenge of implementing common hierarchical task networks onboard still belongs 
to the research gap. There is an urgent requirement to combine the existing solutions to 
forge a task description methodology on the spacecraft and complete the deployment of 
the algorithm. 

3. Objective-Driven and Task Objective Command 
The remote operation of spacecrafts includes sending remote-control commands to 

the ground and receiving telemetry data. To carry out the standardized design of remote-
control and telemetry data, the Consultative Committee for Space Data Systems (CCSDS) 
has carried out a standard encapsulation of remote-control commands in space packages 
and designed the Telemetric and Command Exchange described by XML [19], which de-
fines the data format for spacecraft remote control and telemetry [20]. The European Space 
Agency (ESA) then launched a package standard compatible with it [21]. It solves the ap-
plication problems of space packages not given by the CCSDS and provides an effective 
way to generalize remote-control commands. This paper’s data-injection format is based 
on the format specified in the space package protocol CCSDS 133.0-B-1[22], which is 
shown in Table 1. 

Table 1. Space Packet structural components.[22] 

Packet 
Header 

Packet Data Field 

Packet 
Secondary 

Header 

User Data Field 
Command Packet 1 

Command 
Packet 2 

…… Command 
Packet n  Command 

Packet Header 
Command Packet 
Secondary Header 

Packet 
Data Field 

6 octets 
Variable 4 octets 2 octets Variable Variable  Variable 

1-65535 octets 

The Space Packet consists of a Packet Header, Packet Secondary Header, and User 
Data Field. Within the User Data Field are multiple Command Packets, each filled with 
specific information in its Packet Data Field. This structure is commonly used for data 
injection and has been applied in practical engineering projects. 

Defining “action” as the basic unit that prompts spacecrafts to alter their state and 
complete tasks is known as “action-driven.” Autonomous Scientific Space Exploration re-
quires using task objectives as the foundational unit to enable the spacecraft’s autonomous 
decision making. It needs to use targets to drive the execution of actions to alter the space-
craft’s state, culminating in task completion. This method is called “objective-driven” [23]. 
Consequently, designing a method to describe and transform between objective-driven 
and action-driven approaches is crucial. This necessitates defining multiple levels of com-
mands to describe the spacecraft’s actions and objectives from the bottom up. 

In this paper, the command level of a spacecraft is defined as three levels. 
Primitive-level Command: the lowest level which defines the most basic and directly 

executable actions of the spacecraft.  
Schedule-level Command: It usually corresponds to a command sequence consisting 

of multiple consecutive Primitive-level Commands, which generally do not change their 
order or content according to changes in the environment and are reused many times dur-
ing the actual command use. It is possible that such sequences are fixed in the spacecraft 
and are invoked by some commands, which we call “macro commands”. It may also be 
injected from the ground or generated onboard, which we call a “time-based schedule”, 
or it may be an “automatic” level of spacecraft control, where the spacecraft can directly 
execute a fixed sequence of commands under certain circumstances. Schedule-level Com-
mands are all composed of Primitive-level Commands. 
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Task-level Objective Command (TOC): The highest-level task that a spacecraft needs 
to execute. It is usually qualified with mission objectives, time, etc. Accomplishing this 
task requires the spacecraft to perform a series of actions by multiple payloads and sub-
systems (e.g., engines, flight attitude, cameras, and storage systems) at the right time. The 
spacecraft is based on specific objectives to generate the appropriate TOC and decom-
posed into the corresponding Schedule-level Command. The spacecraft generates appro-
priate commands based on specific objectives and decomposes them into corresponding 
Schedule-level Commands or Primitive-level Commands for the spacecraft to execute. In 
this study, we integrate the CCSDS- and PUS-recommended standards for command de-
sign [24] to achieve the TOC’s format design. In the “Packet Data Field” field of the PUS 
package standard, we defined the TOC’s format; the completed recommended definition 
is shown in Table 2. 

Table 2. The packet-data-field-recommended structure of Task-level Objective Command. 

Packet Data Field 

Task ID 

Conditional Parameters 
Number of 
Condition 
Parameters 

Parameter 1 
…… Parameter N 

Physical Scalar Type 
Numeric 

Type Length Value 

1 octet 1 octet 1 octet 1 octet 1 octet Variable Variable 

TOC data are categorized into Task ID and conditional parameters. The Task ID 
uniquely defines the specific internal information of the command. This information is 
used to distinguish the target task type of the spacecraft. Conditional parameters encom-
pass the content and quantity of parameters. The parameter in the condition parameter is 
the task target information description. The Task ID specifies the number of parameters 
and their input format. By defining these parameters, the TOC identifies the spacecraft’s 
target objectives. Integrating with the spacecraft’s intelligence, it devises strategies and 
schedules command executions. 

Each parameter’s internal attributes comprise the Physical Scalar Type, Numeric 
Type, length, and value. The Physical Scalar Type indicates various types of resource in-
formation data, with the specific kinds and applications of physical quantities detailed in 
Table 3. 

Table 3. Physical Scalar Type. 

ID Physical Scalar Type Value 
1 Prerequisite 00 
2 Parameter 01 
3 Monitoring item 11 

The prerequisite is the execution of this task, which requires the specified value in 
this parameter to be met. If it is not satisfied, the command cannot be executed. The pa-
rameter represents the target value required to fulfill the mission objective, which needs 
to reach this value at the end of the execution of the TOC. The monitoring item involves 
the value of a parameter under surveillance, and the TOC is executed when the corre-
sponding conditions are met. 

Numeric Type refers to the user-defined data formats, including numeric and enu-
meration types, etc. The first four bits define the data format, where “0000” signifies an 
integer, “0001” is an enumeration, and “0010” is a floating point. The last four bits desig-
nate operators, with “0000” for greater than, “0001” for less than, “0010” for equal to, 
“0011” for greater than or equal to, “0100” for less than or equal to, and “0101” for not 
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equal to. Length denotes the byte count of the condition parameter’s value, and value 
specifies the exact information the parameter represents. 

The way of using the TOC is shown in Figure 1. 

Spacecraft

TOC 
Schema

TOC Templates TOC
instance

Data 
Injection 
PacketSpacecraft Data 

Supporting 
Standards

Communications 
Equipment

 
Figure 1. Methods of applying TOC. 

During spacecraft design, designers can create specific TOC formats tailored to the 
payload function, using the generalized TOC format as a basis. During task execution, 
TOC instances are either generated by the spacecraft’s intelligent capability systems or 
injected from the ground based on current needs. It is essential to fill in the command 
condition parameters in TOCs when injecting commands to meet current requirements. 
Subsequently, the TOC is loaded into the spacecraft’s software operations for system exe-
cution. The system then parses the TOC, decomposes it into lower-level commands, and 
executes it. 

In the case of a rotary table on a spacecraft, for example, we designed a TOC for the 
task of representing the rotary table. The task is to command the rotary table to rotate to 
an “absolute angle” of a specified parameter, i.e., the angular position of the rotary table 
with respect to a fixed reference direction, which does not depend on the previous posi-
tion or any other change factors. This TOC has two parameters, namely the absolute angle 
of the azimuth and pitch rotation. The TOC instantiated according to the specific format 
we designed is shown in Table 4. 

Table 4. The packet-data-field instance of Task-level Objective Command. 

Packet Data Field 

Task ID 

Conditional Parameters 
Number 
of Condi-
tion Pa-
rameters 

Parameter 1 (Azimuth) Parameter 2 (Pitch Angle) 
Physical 

Scalar 
Type 

Numeric 
Type 

Length Value 
Physical 

Scalar 
Type 

Numeric 
Type 

Length Value 

1 ocete 1 ocete 1 ocete 1 ocete 1 ocete 1 ocete 1 ocete 1 ocete 1 ocete 1 ocete 
10000001 00000010 00000001 00000010 00000001 00011110 00000001 00000010 00000001 00111100 

The last row of the table is the specific value after instantiation. In this instance, we 
define the tasks as the absolute angle rotation of the azimuth turntable to 30 degrees and 
the absolute angle rotation of the pitch turntable to 60 degrees. For ease of understanding, 
we define the rotation angle here as an integer. Of course, in the actual project, in order to 
ensure accuracy, the relevant parameters will increase the length of the data and be de-
fined as a floating-point type. 
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4. Spacecraft Onboard Task Scheduling Method Based on HTN-T 
4.1. HTN 

The HTN forms the foundational framework of this study’s related work. Therefore, 
it is necessary to introduce HTNs prior to the introduction of onboard information de-
scription modeling for spacecrafts.  

In HTNs, tasks are systematically classified into several categories: 
• Primitive task: primitive tasks are those that can be executed directly without further 

decomposition. 
• Composite task: composite tasks comprise a set of either primitive or composite 

tasks. 
• Target task: target tasks are defined as objectives that the scheduling process aims to 

achieve. 
HTNs require the user to input the domain file and problem file, where the domain 

file includes the user-defined operator and method information. Starting with target tasks 
in the problem file, HTNs employ a top-down approach to expand and decompose sub-
tasks based on a domain file, gradually constructing feasible solutions until all tasks are 
primitive tasks. This decomposition process adheres to a modified version of the Planning 
Domain Definition Language (PDDL) rules [25]. There are many planners based on HTNs, 
including SIPE-2 [26], SHOP2 [27], Blackbox [28], and so on. 

The operator syntax defines a primitive task within the hierarchical task network. 
The operator format is 

(:𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐴𝐴)  

The definition of ‘Operator’ includes several crucial components: ‘Headname,’ which 
denotes the name of the primitive task; ‘Pre,’ the logical precondition that must be satis-
fied for the operation to execute; ‘Add,’ which lists tasks to be added to the task-execution 
list prior to operation execution; and ‘Del,’ which lists tasks to be removed from the exe-
cution list once the operation is complete. All of these components, ‘Pre,’ ‘Add,’ and ‘Del,’ 
function as predicates that govern the task-management process. Thus, ‘Operator’ func-
tions by adding tasks from ‘Add’ to the execution list before beginning the operation and 
removing tasks listed in ‘Del’ once the operation has concluded. This ensures the dynamic 
management of tasks based on predefined logical conditions. 

The method is a specific way of decomposing a composite task, and it is formatted as 

(: 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1] 𝐿𝐿1 𝑇𝑇1 [𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 ]𝐿𝐿2 𝑇𝑇. . . [𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡]𝐿𝐿𝐿𝐿 𝑇𝑇𝑇𝑇)  

Multiple decomposable method combinations are allowed in each method. Here, 
taskname is the name of the subtask into which the current method breaks the composite 
task. L is the precondition for the method to be executed, and T is the list of operators corre-
sponding to the method that needs to be executed. For each method, different decompo-
sition options are supported under different preconditions. During decomposition, the 
“method” checks each precondition in turn (or in random order), and once any precondi-
tion is satisfied, the decomposition is completed using the appropriate operator. 

The problem in the problem file outlines the current and desired target states for each 
planning task. It is represented as 

( 𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑([𝑎𝑎1,1 ,𝑎𝑎1,2 , … ,𝑎𝑎1,𝑛𝑛) 𝑇𝑇1. . . ([𝑎𝑎𝑎𝑎, 1 ,𝑎𝑎𝑎𝑎, 2 , . . .𝑎𝑎𝑎𝑎,𝑛𝑛, ]) 𝑇𝑇𝑇𝑇)  

There are m planning problems allowed in each problem, and in each problem file, the 
initial state is denoted by a, and the goal to be achieved is defined by T. 

The above describes the conceptual information on hierarchical task networks that 
will be used in this paper, and more mathematical backgrounds on hierarchical task net-
works can be found further in the literature [29]. 

These formats mentioned are rooted in the conventional HTN planning framework, 
where planning is achieved simply by inputting the respective problem and domain files. 
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However, in the context of spacecraft onboard planning, the constraints of the environ-
ment and available resources prevent direct planning with these standard planners. This 
is because the spacecraft necessitates the immediate execution of planning results, and the 
onboard data must conform to the spacecraft’s data format specifications. Consequently, 
the problem and domain file descriptions must align with the space data system’s format 
requirements. This requires us to redesign the description methods of the domain file and 
problem file in the spacecraft according to the relevant principles of HTNs. 

4.2. Overview of the Methodology 
Despite HTNs being a utility that meets the usage requirements for general domain 

scheduling problems [30], their limitations include their inadequate time description and 
a focus on logical task sequences over the environmental state or resource usage. Address-
ing these gaps, this study proposes the HTN-T algorithm. The overall task-scheduling 
framework of this study is shown in Figure 2. 

Spacecraft Payload Management Unit

Onboard Scheduling 
Rule Base

Housekeeping Data

Problem 
Information

Domain 
Information

Resolver

Payloads

HTN-T Method

Logical 
Scheduling Results

HTN
Scheduler

Timeline
Scheduler

Timeline 
Scheduling Results

Conflict 
Resolution

Data Injection

Spacecraft software architecture

Time-based 
Schedule 
Service

Commands 
Service

Macro 
Commands 

Service

Online 
Monitoring 

Service

 
Figure 2. HTN-T task-scheduling framework. 

The scheduling framework executes on a Payload Management Unit (PMU) on the 
spacecraft. The ground system generates and instantiates the TOC, which is sent to the 
PMU using data injection. After receiving the TOC, the PMU completes the scheduling 
activities by combining the spacecraft’s telemetry parameters, environment, and state. 

To adapt to the HTN Scheduler, we need to compile both Problem Information and 
Domain Information through the resolver before operation. Specifically, the Domain In-
formation is derived from the spacecraft, and we need to format this information in this 
research, whereas the Problem Information is derived from the TOC. The HTN-T algo-
rithm schedules the two compiled types of information both logically and temporally. 
Upon completing the scheduling, conflicts are resolved according to the utilization of re-
sources, leading to the generation of scheduling results. These results are then integrated 
into the spacecraft’s software architecture, supporting various operations such as Online 
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Monitoring Service (real-time monitoring of the spacecraft’s operation status), Time-based 
Schedule Service (managing and executing a list of event schedules triggered by execution 
time), Commands Service (analysis, forwarding, and management of Primitive-level 
Commands), and Macro Commands Service (managing and executing preresident com-
mands). Subsequently, the scheduling data are dispatched to the payloads from the archi-
tecture for execution. 

Logical constraints refer to the sequential logical order between tasks. Some tasks 
require a sequential relationship between tasks during execution; for example, the camera 
must be activated before taking a photograph. The aim of processing logical constraints is 
to produce an execution sequence that ensures all tasks are carried out in the established 
order, eliminating any conflicts. Upon completing the processing of logical constraints, an 
ordered task-execution sequence is obtained. 

Temporal constraints refer to the time limit of task execution, such as requiring a pic-
ture to be taken within 5 s of activating the camera or completing a task within a specified 
period. Information regarding these constraints is typically derived from the TOC and 
Domain Information. We will address the timing requirements of tasks when the logical 
constraints have been resolved to establish the task-execution sequence with timecodes. 

Resource constraints involve resolving conflicts that arise from the simultaneous con-
sumption of identical resources by different tasks, following the resolution of logical and 
temporal constraints. For instance, a payload only performs one task simultaneously, or 
only one task may be executed within limited memory capacity. Finally, the task-execu-
tion sequence with time information without task-resource conflict can be obtained. 

The core of the whole onboard scheduling framework is the HTN-T method. The 
overall schematic of the method is shown in Figure 3. 

Manual/autonomous
 decision-making

Spacecraft

Resource

TOC

Result

Macro 
Command

HTN Scheduler

Horizontal and 
vertical expansion

Conflict 
Resolution

Timeline Scheduler

Spacecraft software architectureOnline Monitoring 
Services

Command

Schedule-level Command

               TOC

Schedule-level Command

Command Command Command

Repository

 
Figure 3. The overall schematic of the HTN-T method. 

Logical constraints are primarily addressed using the HTN planner to decompose 
the TOC. Temporal constraints are managed using the timeline method, which extends 
tasks horizontally and vertically along the timeline. Resource constraints are satisfied by 
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the resource conflict elimination algorithm of spacecrafts to optimize the usage of re-
sources. Upon completing these three steps, spacecraft tasks can be efficiently scheduled, 
ensuring that time, resources, and logical constraints are all adequately met. 

The specific algorithms and methods for the three constraints are described in detail 
below. 

4.3. Spacecraft Domain Information Data Format Design 
Upon receiving the TOC, the spacecraft is tasked with analyzing and decomposing 

this input to formulate action-driven commands, drawing upon pre-existing knowledge. 
This decomposition needs to consider the spacecraft’s instantaneous environmental con-
ditions and parameters and adhere to certain preset rules. 

In traditional scheduling, pre-existing knowledge is typically represented as a do-
main file. However, the unique format of spacecraft data necessitates the development of 
a new knowledge-representation method. To address this requirement, this study con-
structs a repository for the spacecraft onboard task domain, specifically designed to en-
capsulate the mentioned rules and knowledge. 

This study uses the spacecraft onboard task information knowledge repository, cat-
aloging essential rule-based information. The repository is segmented into two primary 
sections. One stores pertinent a priori knowledge along with general and specific sched-
uling rules, and another details the spacecraft’s operational status, including engineering 
and environmental parameters, as well as real-time resource state information. To facili-
tate this, we introduce the Command Template Configuration Table (CTCT) and the Re-
source State Information Table (RSIT) to categorize scheduling knowledge and spacecraft 
states, respectively. 
4.3.1.Command Template Configuration Table 

The CTCT is instrumental in associating scheduling tasks with their requisite a priori 
knowledge, containing details on spacecraft tasks, scheduling rules, and their founda-
tions. Operators are equipped to modify or collectively update command template con-
figurations through large packet transmission or macros, enabling dynamic scheduling 
rule management. 

Given spacecraft data storage constraints, information is not maintained in a rela-
tional database but is instead stored in binary format. The form of the CTCT designed in 
this study is shown in Table 5. The CTCT outlined in Table 5 serves merely as a design 
framework; the specific parameters and their respective lengths are adjustable based on 
real-world requirements. 

Table 5. Command Template Configuration Table information and interpretations. 

Name Interpretations 
TOC ID Task-level Objective Command Unique Identifier 

Task Level Defines the level of the task 
Task Priority Defines the priority and order of execution of tasks 

Length of mandate Defines a range of start and end times for task execution 
Decomposing Task Information Defines how tasks are broken down 

Precondition Information Defines the preconditions for starting this task 
Resource information Defines resource consumption information for this task 

Load module Defines the name of the program module that needs to be loaded for this task 
Command or macro sequence 

contents 
Defines the specific encoding of this command 

The TOC ID is a unique identifier for the task configuration information and distin-
guishes between commands. Each CTCT item encompasses elements such as time, prior-
ity, the decomposition method, preconditions, and resources, among others. Each CTCT 
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item only corresponds to a TOC, but a TOC can correspond to several CTCT items due to 
different preconditions, resource constraints, etc. This corresponds to the problem in the 
HTN methodology. The information’s specific format and length in this table differ de-
pending on the TOC. 

The information description method for the Decomposing Task Information Column 
is shown in Table 6. 

Table 6. The format of Decomposing Task Information Column. 

Number of Disaggregated 
Task Information N 

Task 1 Information 
Task 2 

Information … Task M  
Information Command Template 

ID 
Parameter Calculation 

Method 
8 bit 8 bit 8 bit (n × 16) bit … (40 + n × 16) bit 

The Decomposing Task Information Column is primarily used to represent how the 
current TOC is decomposed. This is the fundamental basis for decomposing the TOC into 
executable commands. Specifically, the information representation of the decomposition 
task primarily comprises the associated Command Template ID and the command param-
eter translation methodologies. These methodologies for the translation of command pa-
rameters are typically established through preset configurations or data injections within 
the spacecraft’s software architecture. This Column indicates how the spacecraft should 
be converted from higher-level commands (e.g., TOC) to lower-level commands or com-
mands that can be executed directly. Meanwhile, the Precondition Information of the task 
influences the chosen method for decomposition, resulting in variations in the Decompos-
ing Task Information Column for the same TOC, contingent upon its prerequisites. 

The Precondition Information of the task is described as shown in Table 7. 

Table 7. The recommended format of Precondition Information Description Column. 

Number of Preconditions 
Precondition 1 

Prerequisite 2 … Prerequisite n 
ID Operator Type Value 

8 bit 8 bit 8 bit 8 bit 8 bit (n × 32)bit … (n × 32)bit 

The execution of a specified task is contingent on the complete satisfaction of its pre-
conditions, which are structured similarly to the TOC format. This design allows for the 
flexible definition of parameters, enabling the precise articulation of preconditions across 
diverse scenarios. 

The spacecraft’s storage of a priori knowledge is the basis of task scheduling. The 
flexible parameter definition supports the construction of subsequent adaptive capabili-
ties, such as allowing the spacecraft to analyze relevant experiences and rules to be depos-
ited into the table through autonomous learning. Preparing the CTCT parameters is more 
complicated and requires robust support from the related Electronic Data Sheet (EDS) 
toolchain software [31]. 

In summary, the spacecraft’s CTCT exhibits high configurability. It adeptly trans-
forms natural language descriptions into highly normalized data types and effectively 
conveys detailed spacecraft-specific Domain Information. In practical applications, the 
CTCT supports the customization of its format and content, allowing it to be tailored to 
the unique requirements of different missions. 
4.3.2.Resource State Information Table 

The RSIT focuses on recording spacecraft states, environmental conditions, and te-
lemetry and engineering parameters. This information is recorded not for direct modifi-
cations but to accurately depict the spacecraft’s operational state during the scheduling 
process. It is recorded to provide data description support for the subsequent algorithms 
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that have autonomous capabilities, enabling the spacecraft to effectively learn from di-
verse data characteristics. 

The format of the RSIT is shown in Table 8 below. 

Table 8. The recommended format of Resource Status Information Sheet. 

Status Item ID Status Item Datatype Status Entry Operator Status Item Value 
8 bit 8 bit 8 bit 8 bit 

Each state has a corresponding Status Item ID and Status Item Value. The Status Item 
Type serves to distinguish various attributes of state items, such as telemetry and envi-
ronmental parameters. Some Status Items include operators; for example, some trigger 
conditions and some imprecise status records only need to record greater than or less than 
a certain value; these operators will also be recorded in the table. 

4.4. Logical Constraint Planning Methods Based on HTN 
The spacecraft receives the TOC and generates the corresponding planning problem 

by resolver transformation. A task list T is defined for all tasks t in the CTCT: 

T = {t1, t2, t3 … , t𝑛𝑛}  

where n represents the total number of TOCs. Also, define the spacecraft’s Primitive-level 
Commands to be C: 

𝐶𝐶 = {𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3 … , 𝑐𝑐𝑚𝑚}  

where m represents the total number of the spacecraft’s Action-Level Commands. In each 
line of the CTCT, a TOC is broken down into a number of commands. We use a mapping 
function M to represent this decomposition relation: 

M(t𝑖𝑖) = {𝑀𝑀𝑡𝑡𝑖𝑖
1 ,𝑀𝑀𝑡𝑡𝑖𝑖

2 , … ,𝑀𝑀𝑡𝑡𝑖𝑖
𝑗𝑗 }  

where j represents the number of decomposition methods corresponding to the TOC t𝑖𝑖. 
And, each 𝑀𝑀𝑡𝑡𝑖𝑖

𝑗𝑗  represents a possible decomposition method of t𝑖𝑖: 

𝑀𝑀𝑡𝑡𝑖𝑖
𝑗𝑗 = {a1, a2, a3 … , a𝑘𝑘}(a𝑘𝑘 ∈ T ∪ C)  

The command a can be any other TOC or spacecraft’s Primitive-level Commands. 
We represent the current environmental state of the spacecraft as a state vector e. 

Then, for spacecraft method selection, you can set a select function: 

Select (𝑡𝑡𝑖𝑖 , 𝑒𝑒,𝐷𝐷, M(t𝑖𝑖)) → 𝑀𝑀𝑡𝑡𝑖𝑖
𝑗𝑗   

In this context, “Select” is an abstract concept used to represent the choice of decom-
position methods. The above formula selects a decomposition method 𝑀𝑀𝑡𝑡𝑖𝑖

𝑗𝑗  from the set of 
decomposition methods 𝑀𝑀(𝑡𝑡𝑖𝑖) . The selection is based on how well the environmental 
state required by the decomposition method 𝑀𝑀𝑡𝑡𝑖𝑖

𝑗𝑗  matches the current environmental state 
e. In the above equation, D is the Domain Information and contains all possible decompo-
sition methods. Here, the source of data for D is the CTCT. 

The specific computation of the similarity can be achieved by a matching function 
Match �𝑒𝑒,𝑀𝑀𝑡𝑡𝑖𝑖

𝑗𝑗 � that returns a matching score that reflects the applicability of the decompo-
sition method 𝑀𝑀𝑡𝑡𝑖𝑖

𝑗𝑗  given the current state e. The function can be defined as an indicator 
function: 

Match �𝑒𝑒,𝑀𝑀𝑡𝑡𝑖𝑖
𝑗𝑗 � = �1   if  𝑀𝑀𝑡𝑡𝑖𝑖

𝑗𝑗   is compatible with  𝑒𝑒
0   otherwise  
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Based on this function, if there exists more than one decomposition method that all 
match with a degree of one, we base it on a random selection function, RandomSelect (ℳ), 
where ℳ is the set of all the decomposition methods where the similarity is one: 

ℳ = �𝑀𝑀𝑡𝑡𝑖𝑖
𝑗𝑗 ∈ 𝐷𝐷(𝑡𝑡𝑖𝑖) ∣ Match �𝑒𝑒,𝑀𝑀𝑡𝑡𝑖𝑖

𝑗𝑗 � = 1�  

Finally, integrating the above definitions, the select function Select (𝑡𝑡𝑖𝑖 , 𝑒𝑒,𝐷𝐷) can be 
updated as follows: 

Select (𝑡𝑡𝑖𝑖 , 𝑒𝑒,𝐷𝐷, M(t𝑖𝑖)) = �RandomSelect (ℳ)   if  |ℳ| > 0
  NULL    if  |ℳ| = 0  

The purpose of the HTN algorithm is to generate a low-level task starting from a 
given high-level task through task decomposition. In spacecraft task scheduling, the final 
generated result can be seen as generating a sequence of instructions S: 

S = [c1, c2, … , c𝐿𝐿] ∀c𝑖𝑖 ∈ 𝐶𝐶  

Thus, in essence, HTN-based logical task scheduling can be defined as a decomposi-
tion function M that maps the TOC to Primitive-level Commands: 

M: T → 𝐶𝐶 ∗  

In the above formula, ‘*’ refers to the set of all possible command-level command 
sequences, including the empty sequence. 

Therefore, HTN-based logical scheduling is the method of calculating the mapping 
relationship for Design M. 

The algorithm initializes an empty plan P and then continuously selects a task at ran-
dom from task list T for processing. For each selected task 𝑡𝑡𝑖𝑖, the algorithm tries to obtain 
all possible decompositions 𝑀𝑀𝑡𝑡i for the task based on the Domain Information. Once a 
matching set of decomposition methods is found, the algorithm randomly selects a de-
composition method 𝑀𝑀𝑡𝑡1

𝑗𝑗 . For the selected decomposition method, if it contains only one 
Primitive-level Command and this command belongs to the set of Primitive-level Com-
mands C, the command will be added to P and the associated high-level task will be re-
moved from the task list. Conversely, these tasks are added to the task list T in place of 
the original tasks for further decomposition. This process repeats until T is empty, at 
which point the finalized execution plan P is returned. 

The pseudo-code of the algorithm is shown in Algorithm 1. 

Algorithm 1 HTN Planning Algorithm for Spacecraft Task Scheduling 
Require: Initial state 𝜎𝜎, Domain knowledge ℰ 
Ensure: A valid plan 𝑃𝑃 or failure 
1. 𝑃𝑃 ← ∅ 
2. 𝐸𝐸 ← 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
3. 𝑇𝑇 ← {𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛} 
4.  𝐶𝐶 ← {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑚𝑚} 
5. while 𝑇𝑇 is not empty do 
6. 𝑡𝑡𝑖𝑖 ← RandomSelectTask (𝑇𝑇) 
7. 𝑀𝑀(𝑡𝑡𝑖𝑖) = ℰ = �𝑀𝑀𝑡𝑡𝑖𝑖

1 ,𝑀𝑀𝑡𝑡𝑖𝑖
2 , … ,𝑀𝑀𝑡𝑡𝑖𝑖

𝑝𝑝� 
8. if 𝑀𝑀(𝑡𝑡𝑖𝑖) is empty then 
9. return Plan Failed 
10. end if 
11. ℳ ← �𝑀𝑀𝑡𝑡𝑖𝑖

𝑗𝑗 ∣ Match �𝑒𝑒,𝑀𝑀𝑡𝑡𝑖𝑖
𝑗𝑗 � = 1� 

12. if ℳ is not empty then 
13. 𝑀𝑀𝑡𝑡𝑖𝑖

𝑗𝑗 ← RandomSelect (𝑀𝑀) 
14. if �𝑀𝑀𝑡𝑡𝑖𝑖

𝑗𝑗 � = 1 and 𝑀𝑀𝑡𝑡𝑖𝑖
𝑗𝑗 ⊂ 𝐶𝐶 then 
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15. 𝑃𝑃 ← 𝑃𝑃 ∪𝑀𝑀𝑡𝑡𝑖𝑖
𝑗𝑗  

16. 𝑇𝑇 ← 𝑇𝑇 ∖ {𝑡𝑡𝑖𝑖} 
17. else 
18. 𝑇𝑇 ← 𝑇𝑇 ∖ {𝑡𝑡𝑖𝑖} ∪𝑀𝑀𝑡𝑡𝑖𝑖

𝑗𝑗  
19. end if 
20. else 
21. return Plan Failed 
22. end if 
23. end while 
24. return 𝑃𝑃 

4.5. Timing Constraint Planning Method Based on Timeline 
In the process of actual task execution, it is evident that only considering the execu-

tion sequence is not entirely thoughtful. For spacecrafts, the execution time of each task 
should be clear and knowable. This requires that after the tasks are scheduled as an exe-
cutable sequence, each sequence is given a corresponding timestamp, and the time-con-
straint information between tasks is handled. 

An application process identifier (APID) is a unique identifier for a stream of packets 
to indicate a source, destination, or type [32], and its associated value is available in Space 
Packets. Due to the rigor of space research tasks, we default that tasks on spacecrafts all 
have their fixed execution times. It should be taken into account that different tasks may 
have different APIDs, which can be interpreted to mean that they can be executed simul-
taneously. 

Therefore, all tasks are categorized into different timelines according to the APID, 
and each APID has a unique timeline. We arrange these timelines in parallel and handle 
constraints and conflicts. The above approach is called a “timeline” method. 

We categorize the time constraints on the spacecraft into absolute time constraints, 
horizontal extension constraints, and vertical extension constraints. The absolute time 
constraint means a task must be completed within a specific moment. We define that for 
the set P of all composite tasks on the spacecraft, the length of the execution time of task 
t𝑖𝑖 inside it is D𝑖𝑖. This constraint can be expressed as the absolute time constraint, which 
means that the task must be completed within a specific moment. 

It can be expressed as 
𝑇𝑇start, begin  ≤ 𝑆𝑆𝑖𝑖 ≤ 𝑇𝑇start, end   

𝑇𝑇end, begin  ≤ 𝑆𝑆𝑖𝑖 + D𝑖𝑖 ≤ 𝑇𝑇end, end   
 

T represents the earliest and the latest absolute time of execution of the task’s start or 
end, respectively. Such tasks with strict time constraints need to be completed with the 
highest priority and prioritized in scheduling. 

Horizontal expansion is carried out in a timeline; due to the existence of constraints 
between tasks, it may not be able to directly transition from the initial state to the target 
state, and it is necessary to carry out state extension according to certain rules [33]. For 
example, the camera must execute the power-up task before it executes the photo-taking 
task. This extension is performed on a single APID timeline. The vertical expansion pro-
cess takes place between timelines by taking the active timeline (i.e., the one currently 
being operated on) as a reference and inserting corresponding tasks in the passive timeline 
(i.e., the other timelines) in order to satisfy the relevant constraints [33]. This extension is 
performed on different APIDs, but their execution moments are related. 

For the arbitrary task T, the spacecraft handles the time constraint in the specific way 
shown in Figure 4. In Figure 4, from ① to ② is the horizontal expansion process, and 
from ② to ④ is the vertical expansion process. First, the execution time interval of the 
task is determined and scheduled on the corresponding APID timeline. Then, the 



Aerospace 2024, 11, 350 15 of 25 
 

 

horizontal extension and the vertical extension for task T are accomplished by scheduling 
the tasks before and after the timeline based on the CTCT. 

① ②

③ ④

T T TafterTbeforeTlist Tlist

T TafterTbeforeTlist

Trel

T TafterTbeforeTlist

Trel
Trel-before Trel-after

 
Figure 4. Horizontal and vertical extension of the timeline. 

The tasks that include absolute time constraints must be traversed and placed on the 
timeline during the timing schedule. Then, the traversal of the tasks on each timeline is 
launched, checking whether horizontal and vertical extension tasks exist. If so, the rele-
vant extended tasks are also placed on the timeline until all tasks have been traversed and 
scheduled. 

There will still be many tasks that have no time constraints; for each of them, the tasks 
are placed sequentially backward from the starting point of the corresponding timeline. 

At this point, conflicts may be encountered. For example, task T4 in Figure 5; at this 
point, there is not enough space in T3 and T for T4 to go through, but T has a corresponding 
time constraint that must be completed after the moment ti and before the moment tj. If T 
is allowed to be completed after T4, it may cause logical conflicts. 

T

T4

T3Tlist T1 T2

ti tj

Tafter

T

T4

T3Tlist T1 T2

ti tj

Tafter

TT4T3Tlist T1 T2

ti tj

Tafter

①

②

③

 
Figure 5. Processing of time constraints. 

Therefore, the algorithm lets task T and its related extended tasks move backward 
and ensure they are within the time windows of ti and tj. The schematic of the move is 
shown in Figure 5. 

Thankfully, the vast majority of actual spacecraft tasks have a large enough time win-
dow that failure for time-constrained scheduling is a rare occurrence. 

The pseudo-code for spacecraft timing planning is shown in Algorithm 2. The algo-
rithm first initializes the timeline for all APIDs and sets their pointers to zero. In the main 
loop, the algorithm iterates through each task, obtains the current pointer value based on 
the task’s APID, checks that the task does not overlap with a task that has an absolute time 
limit, and adjusts the pointer position accordingly. The task is then added to its 
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corresponding APID timeline. For tasks with absolute time constraints, the algorithm 
schedules them directly at the specified start time. 

Algorithm 2 Timeline Timing Planning Algorithm 
Require: task sequence 𝑃𝑃 
Ensure: Sequences with temporal information 𝑃𝑃𝑡𝑡 
1. Initialize all APID Timelines 
2. Initialize all 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 pointers to 0 
3. for 𝑇𝑇𝑖𝑖 in 𝑃𝑃 do 
4. Get the APID from 𝑇𝑇𝑖𝑖 
5. Check the current pointer value for the 𝑇𝑇𝑖𝑖 APID 
6. if task duration overlaps with a task with absolute time constraint then 
7. Move the APID pointer value to after the task with absolute time constraint 
8. end if 
9. Stack the task on the APID time axis with start time as the pointer value 
10. Update the APID pointer value 
11. if there are other tasks that need to start at the same time on different APIDs then 
12. Coordinate the start times across different APIDs 
13. end if 
14. end for 
15. for 𝑇𝑇𝑖𝑖 in 𝑃𝑃 with absolute time constraint do 
16. Add 𝑇𝑇𝑖𝑖 to the appropriate APID Timeline at 𝑇𝑇start  
17. end for 
18. for 𝑇𝑇𝑖𝑖 in 𝑃𝑃 do 
19. Get the APID from 𝑇𝑇𝑖𝑖 
20. Check the current pointer value for the 𝑇𝑇𝑖𝑖 APID 
21. if task duration overlaps with a task with an absolute time constraint then 
22. Move the APID pointer value to after the task with an absolute time constraint 
23. else 
24. Stack the task on the APID time axis with start time as the pointer value 
25. end if 
26. Update the APID pointer value 
27. end for 
28. Initialize an output sequence 𝑆𝑆 
29. for each time tick starting from 0 do 
30. for each APID do 
31. if a new task starts on this APID then 
32. Add the task name and start time to sequence 𝑆𝑆 
33. end if 
34. end for 
35. end for 
36. return sequence 𝑆𝑆 

4.6. Resource Constraint Planning Method Based on Conflict Elimination. 
Considering that multiple timelines (i.e., application processes) are allowed to exe-

cute related tasks simultaneously during the processing of time constraints, the feasibility 
of resource allocation must be considered when these tasks are performed simultane-
ously. 

For example, when two payloads expect to downlink image data simultaneously, 
communication channel occupancy is an issue to consider, i.e., the channel required for 
downlinking must be smaller than the one owned. When the channel occupancy for the 
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simultaneous execution of tasks exceeds the maximum channels available, the delayed 
execution of tasks must be considered. A related schematic is shown in Figure 6. 

Tlist1

T1 tl1=4 

V1=3
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Tlist1

T1 tl1=4 

V1=3
T4

Tlist2

Tlist3

①

②

③

T2 tl1=3 

V1=4
T5

T3 tl1=2 

V1=5
T6

Vertical 
expansion Vmax=7ti ti

 
Figure 6. Resource constraint conflict resolution schematic. 

For the sequence of tasks P that has been given temporal information, each of the 
tasks t in it includes several resources R𝑡𝑡𝑡𝑡: 

R𝑡𝑡𝑡𝑡 = {𝑟𝑟1𝑚𝑚, 𝑟𝑟2𝑚𝑚, 𝑟𝑟3𝑚𝑚,···, 𝑟𝑟𝑛𝑛𝑛𝑛}  

for each resource 𝑟𝑟𝑛𝑛 and also for the maximum resource occupancy R𝑛𝑛 of the spacecraft, 
for the spacecraft state at each moment in time, 

∀𝑡𝑡𝑛𝑛 ∈ 𝑃𝑃, R𝑛𝑛 ≥�𝑟𝑟𝑛𝑛𝑛𝑛

𝑚𝑚

𝑖𝑖=0

  

Therefore, in the face of the resource handling problem of task execution, and con-
sidering that the timing and logical planning will not be changed, based on the execution 
priority of the task, we eliminate the related resource conflicts. 

Firstly, we search for the resource occupation of tasks by traversing backward in time. 
For the set 𝑃𝑃𝑟𝑟 of all tasks occupying resources at a certain instant, the priority of the rele-
vant tasks is set as 𝑡𝑡𝑙𝑙𝑙𝑙, and all the tasks in 𝑃𝑃𝑟𝑟 are sorted according to the priority from 
high to low; then, we obtain 

P𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = {𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3,···, 𝑡𝑡𝑘𝑘}(𝑘𝑘 ≤ 𝑛𝑛, 𝑡𝑡𝑙𝑙1 > 𝑡𝑡𝑙𝑙2 > 𝑡𝑡𝑙𝑙3 >···> 𝑡𝑡𝑙𝑙𝑙𝑙)  

Second, based on the greedy algorithm, the corresponding tasks are selected to be 
added to the set of tasks to be executed based on the priority from high to low. Third, it 
traverses backward in time until the entire timeline is traversed. The addition is stopped 
if a particular item’s resource occupation exceeds the threshold after adding a task. The 
remaining tasks (including this task) will not be added. At last, it is backward and repaired 
like in Figure 6 until a particular moment when the resource usage no longer exceeds the 
threshold. 

Figure 6 illustrates that when a resource (V in the figure) is in conflict, the task with 
lower priority moves backward. T5 in the figure is a vertical extension of T6 and therefore 
moves backward following T6. Afterward, the tasks on both timelines 2 and 3 undergo a 
backward change in time due to resource conflicts. 

The relevant pseudo-code is in Algorithm 3. 

Algorithm 3 Resource Planning Algorithm 
Require: Sequences with temporal information 𝑃𝑃𝑡𝑡  
Ensure: 𝑃𝑃𝑡𝑡 without resource conflict or failure 
1. for each timepoint 𝑡𝑡 from 𝑡𝑡 = 0 do 
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2. for each resource 𝑅𝑅𝑡𝑡𝑡𝑡 for task do 
3. if 𝑅𝑅𝑡𝑡𝑡𝑡 not meets the constraints at 𝑡𝑡 then 
4. Continue 
5. else 
6. Sort 𝑇𝑇 based on 𝑡𝑡𝑡𝑡 in ascending order 
7. while no tasks need to be shifted do 
8. Shift the 𝑇𝑇 backwards 
9. Shift 𝑇𝑇 s′ vertical expansion tasks 
10. Shift 𝑇𝑇 s′ horizontal expansion tasks 
11. Select any one expansion tasks 
12. end while 
13. if 𝑅𝑅𝑡𝑡𝑡𝑡 not meets the constraints at 𝑡𝑡 then 
14. return Planning Failed 
15. end if 
16. end if 
17. end for 
18. end for 
19. return sequence 𝑆𝑆 

5. Experimentation 
The experiments ignore the actual scenarios and just focus on algorithms, and prin-

ciple verification of the algorithm is conducted, which includes testing for logic, time, and 
resource conflict elimination, as well as multi-tasking stress testing. Tests are conducted 
with the same hardware configuration as in real-world application scenarios. The algo-
rithms related to this research are implemented based on the embedded Linux environ-
ment, with Ubuntu 22.03 as the operating system, and the algorithms are developed 
through C language. The related experiments are carried out directly in the embedded 
environment. 

Relying on the principle of the algorithm, baseline testing is completed with sufficient 
resources and no time constraints to ensure that the algorithm operates appropriately. 
During the baseline testing, this study generates a series of TOCs and their accompanying 
CTCT with the help of the Electronic Data Sheet toolchain. In this experiment, the total 
number of TOCs was specified as five. The test results based on these commands are 
shown in the following Table 9. 

Table 9. Baseline test results for the HTN-T algorithm. 

Use Case Number Number of Rows in the CTCT Number of 
Timelines 

Average Scheduling Time 
(ms) 

Test Case 1 9 2 875 
Test Case 2 9 4 887 
Test Case 3 10 2 966 
Test Case 4 10 4 1004 
Test Case 5 11 2 1035 
Test Case 6 11 4 1066 
Test Case 7 12 2 1103 
Test Case 8 12 4 1077 
Test Case 9 13 2 1214 

Test Case 10 13 4 1298 
Test Case 11 14 2 1326 
Test Case 12 14 4 1401 
Test Case 13 15 2 1405 
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Test Case 14 15 4 1519 
Test Case 15 16 2 1569 
Test Case 16 16 4 1586 

In Table 9, the number of rows in the CTCT refers to the number of rows correspond-
ing to the Command Template Configuration Table when this test case is tested. The more 
rows there are, the more computationally intensive the algorithm is. The number of time-
lines refers to the cumulative number of timelines (i.e., APIDs) occupied by all Primitive-
level Commands involved in this test case. 

For each test case, all the parameters and Primitive-level Commands are input into 
the CTCT according to the format described in the previous section, and then according 
to the input TOC, the corresponding results are output to complete the test of the test case. 

The table displays the outcomes of 16 individual test cases, each representing a TOC, 
every TOC tested 20 times. Due to the algorithm’s inherent randomness, scheduling re-
sults can vary with each execution. The above table illustrates that scheduling can be com-
pleted quickly, revealing a positive correlation between the CTCT’s row count and execu-
tion time. 

The scheduling success rate reflects the algorithm’s ability to produce an applicable 
sequence. Despite limited resources and time constraints, the algorithm consistently 
achieves successful scheduling, demonstrating its practical applicability. 

Second, we conducted tests with varied tasks, time constraints, and limited resources 
beyond the baseline to validate the algorithm’s efficacy in managing resource and time 
constraints. In this experiment, the total number of TOCs was specified as five. The test 
results based on these commands are shown in Table 10 below. All the test cases are based 
on test cases 1–16, to which relevant time constraints and resource constraints are added. 

Table 10. Test results of constraint handling for the HTN-T algorithm. 

Use Case 
Number 

Based 
on Case 
Number 

Number 
of Rows 

in the 
CTCT 

Number 
of 

Timeline
s 

Time 
Constraint

s 

Number 
of 

Extensions 

Resource 
Limit 

Average 
Schedulin

g Time 
(ms) 

Scheduling 
Success 

Percentage 
(%) 

Scheduling 
Time 

Percentage 
Increase 

(%) 

Maximum 
Number of 
Scheduling 

Sessions 

Test 
Case 17 

Test 
Case 1 9 2 1 1 1 886  100% 1.26% 1 

Test 
Case 18 

Test 
Case 2 9 4 2 2 2 924  100% 4.17% 1 

Test 
Case 19 

Test 
Case 3 10 2 1 1 1 1034  100% 7.04% 1 

Test 
Case 20 

Test 
Case 4 10 4 2 2 2 1098  100% 9.36% 1 

Test 
Case 21 

Test 
Case 5 11 2 1 1 1 1115  100% 7.73% 1 

Test 
Case 22 

Test 
Case 6 11 4 2 2 2 1089  100% 2.16% 1 

Test 
Case 23 

Test 
Case 7 12 2 1 1 1 1130  100% 2.45% 1 

Test 
Case 24 

Test 
Case 8 12 4 2 2 2 1114  100% 3.44% 1 

Test 
Case 25 

Test 
Case 9 13 2 1 1 1 1287  100% 6.01% 1 
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Test 
Case 26 

Test 
Case 10 

13 4 2 2 2 1375  100% 5.93% 1 

Test 
Case 27 

Test 
Case 11 14 2 1 1 1 1357  100% 2.34% 1 

Test 
Case 28 

Test 
Case 12 14 4 2 2 2 1451  95% 3.57% 2 

Test 
Case 29 

Test 
Case 13 15 2 1 1 1 1409  100% 0.28% 1 

Test 
Case 30 

Test 
Case 14 15 4 2 2 2 1570  95% 3.36% 2 

Test 
Case 31 

Test 
Case 15 16 2 1 1 1 1620  95% 3.25% 2 

Test 
Case 32 

Test 
Case 16 16 4 2 2 2 1652  95% 4.16% 2 

In the table, the time constraints, number of extensions, and resource limit are defined 
in advance within the CTCT and RSIT before each case test. The tests detailed in the table 
above involve multiple time and resource constraints. These are also considered for the 
task’s horizontal and vertical extensions. We stipulate that upon scheduling failure, the 
algorithm retries until successful. If scheduling keeps failing, at the same time, the space-
craft operation can be controlled by “assertion” (a statement in a program that checks if a 
condition is true and throws an error if it is not) when the constraints are not satisfied so 
that even if the planning fails, the robustness and safety of the spacecraft operation will 
not be affected. 

The table suggests the algorithm achieves a high scheduling success rate and can ful-
fill practical demands. The data further reveal that the algorithm consistently achieves a 
high scheduling success rate, even under more complex task configurations (for instance, 
test case 15, which involves a greater number of timelines and task extensions), demon-
strating the algorithm’s robust adaptability to complex tasks. In cases of planning failures, 
the algorithm’s inability to identify a solution meeting all constraints is primarily at-
tributed to its handling of specific stochastic factors. For these cases, the algorithm suc-
cessfully schedules a second attempt without significant drawbacks. 

The algorithm undergoes a stress test designed to assess the impacts of increased 
data volume on its performance. Some specific test cases amplify the volume of temporal 
constraints and resource constraints to investigate the algorithm’s responsiveness to en-
hanced complexities. The test results of the stress test are shown in Table 11 and Figure 7. 

Table 11. Stress test results for the HTN-T algorithm. 

Number of Time 
Constraints 0 2 4 6 8 

Case 
Number 

Task 
Configuration 
Information 
Table Rows 

Average 
Schedul

ing 
Time 
(ms) 

Schedul
ing 

Success 
Rate (%) 

Average 
Schedul

ing 
Time 
(ms) 

Schedul
ing 

Success 
Rate (%) 

Average 
Schedul

ing 
Time 
(ms) 

Schedul
ing 

Success 
Rate (%) 

Average 
Schedul

ing 
Time 
(ms) 

Schedul
ing 

Success 
Rate (%) 

Average 
Schedul

ing 
Time 
(ms) 

Schedul
ing 

Success 
Rate (%) 

Test Case 33 9 1311 100% 1356 100% 1395 100% 1412 100% 1509 100% 
Test Case 34 11 1413 100% 1443 100% 1477 100% 1497 100% 1534 100% 
Test Case 35 13 1553 100% 1594 100% 1623 100% 1678 100% 1812 100% 
Test Case 36 15 1685 100% 1712 100% 1756 100% 1794 100% 1893 100% 
Test Case 37 17 1787 100% 1903 100% 1955 90% 2008 90% 2079 90% 
Test Case 38 19 1902 100% 1995 100% 2038 100% 2065 100% 2101 100% 
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Test Case 39 21 1987 100% 2045 100% 2079 100% 2123 100% 2209 100% 
Test Case 40 23 2033 100% 2089 100% 2150 100% 2193 100% 2302 100% 
Test Case 41 25 2353 100% 2467 100% 2531 100% 2624 100% 2755 90% 
Test Case 42 27 2477 100% 2586 100% 2779 100% 2813 100% 2835 100% 
Test Case 43 29 2677 100% 2753 95% 2802 100% 2953 95% 3011 85% 

… … … … … … … … … … … … 
Test Case 53 49 4165 100% 4436 100% 4799 90% 4907 90% 5202 80% 

 
Figure 7. Line graph of stress test results for the HTN-T algorithm. 

The table above presents 10 test cases, identical except for the varying number of time 
constraints and rows in the CTCT. The time constraints and CTCT rows were significantly 
increased to facilitate extreme case testing, despite such conditions being rare in practical 
applications. The test result values were derived from averaging 20 iterations of each use 
case under specific conditions. 

The data from the table indicate that an increase in the CTCT rows leads to a signifi-
cant rise in the average scheduling time, yet the rate of scheduling success remains mostly 
stable. Elevated time constraints lower the scheduling success rate due to conflicts be-
tween certain stochastic solutions and these constraints. Typically, a viable solution 
emerges by the second or third attempt at scheduling. 

According to the above table and the above figure, it can be noticed that the complex-
ity of the algorithm shows a linear pattern and is related to the number of CTCTs. There-
fore, this complexity is able to satisfy the actual applicable scenarios of the spacecraft. 
Thus, integrating findings from the aforementioned experiments, it emerges that the al-
gorithm is theoretically capable of meeting practical application needs. The subsequent 
experiments in this paper will focus on considering the deployment and application of the 
algorithms to real-world problems. 

6. Application 
To assess TOCs’ application in practical engineering, this study establishes a physical 

architecture based on the Space–ground Collaborative Management and Control System 
(SCMCS) [34], as depicted in Figure 8. 
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Figure 8. The basic structure of the ground Collaborative Management and Control System. 

The system is primarily engineered to fulfill the requirements for integrated manage-
ment and control of all spacecrafts within the space–ground interface. Within the system, 
the Spacecraft Operations Simulation device interfaces with the load manager via the 1553 
B bus, facilitating the transmission of control commands and reception of engineering pa-
rameters. The load manager gathers simulation data via the RS422 interface, ensuring ef-
fective communication with the digital load. The Spacecraft Operations Simulation device 
and the Control Protocol Engine (GMCPE) interact through file sharing for remote-control 
and telemetry data exchange while the GMCPE and the Ground Operation and Control 
System (GOCS) interact with remote-control data and telemetry data through database 
and file sharing. The system also comprises various components, such as a load manager, 
Spacecraft Operations Simulation device, and digital load, among others, including 
Ground-based Management. 

In this architecture, the environment and development language of the algorithms 
are the same as in the experiments. In this system, we link the rotary table and camera as 
the two basic payloads, enabling the planning system to manage their scheduling via the 
load manager. 

We designed the corresponding Primitive-level Commands based on this system. The 
Primitive-level Commands target the instantiation of a camera and rotary table. These 
commands are considered indivisible. 

Furthermore, the system incorporates three types of TOCs: payload state manage-
ment, resource management, and rotary table scheduling, as detailed in Table 12. 

Table 12. TOC for SCMCS. 

 Command 
Name Command Meaning ID 

Number of 
parameters Parameter 1 Parameter 2 

Parameter 
3 

1 
Payload Status 
Management 

Sending a command to change the 
execution state 

0 × 
67 0 - - - 

2 
Payload 
Resource 

Management 

Execute the rotary table rotation 
command when the load voltage, 
temperature, and storage reach a 

certain value. 

0 × 
66 

3 Voltage Temperature Storage 

3 
Rotary table 

load scheduling Execute the rotary table command. 
0 × 
65 2 Azimuth  Pitch angle  - 

In this paper, we take the rotary table load scheduling as an example to evaluate the 
effectiveness of spacecraft task scheduling. 

The rotary table load scheduling task needs to rotate the table to a specific absolute 
angle, and the desired effect is that no matter what angle the spacecraft is at, it will rotate 
to the absolute angle after receiving the command. In traditional spacecraft operations, 
task execution typically requires sequentially sending a series of Primitive-level Com-
mands programmed by onboard computers. Contrastingly, the method proposed in this 
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study only needs to send a TOC to specify the target, and the spacecraft can autonomously 
generate an executable sequence based on the current environment without human injec-
tion. 

To evaluate the algorithm’s accuracy, we devised an experiment using the rotary ta-
ble payload scheduling task, identified by Task ID 0 × 65, where diverse parameters were 
input to produce an executable sequence. The rotary table displays three distinct se-
quences generated for varied initial states in the experiments. The specific generated se-
quences are shown in Table 13. 

In Table 13, the azimuth and pitch angles can be adjusted simultaneously so that the 
above tasks can be performed simultaneously as two timelines to shorten the execution 
time of the tasks. The experiments demonstrate that the TOC effectively achieves the 
spacecraft’s task objectives, facilitating a shift to “objective-driven” capability enhance-
ment. 

Table 13. Correspondence between different parameters and generated command sequences. 

No. 1 2 3 
Initial azimuth 80 60 140 

Initial pitch angle 20 85 30 

TOC and objectives 
0 × 65  

Azimuth angle 30 degrees 
Pitch angle 30 degrees 

0 × 65  
Azimuth angle 30 degrees 

Pitch angle 30 degrees 

0 × 65  
Azimuth angle 30 degrees 

Pitch angle 30 degrees 

Command sequence and 
time code 

005 azimuth rotary table load 
on 

010 azimuth rotary table load 
turntable reverse by 20 

degrees 
010 pitch rotary table load—

forward rotation 
015 azimuth rotary table load 

turntable reverse by 20 
degrees 

020 pitch rotary table load -
rotation stop 

025 azimuth rotary table 
load—reverse rotation 

035 azimuth rotary table load 
rotation stop 

045 azimuth rotary table load 
shutdown 

050 pitch rotary table load on 
055 pitch rotary table load 

shutdown 

005 azimuth rotary table load 
on 

010 azimuth rotary table load 
turntable reverse by 20 

degrees 
010 pitch rotary table load 

turntable reverse by 20 
degrees 

020 azimuth rotary table 
load—reverse rotation 

020 pitch rotary table load 
turntable reverse by 20 

degrees 
030 azimuth rotary table load 

rotation stop 
030 pitch rotary table load—

reverse rotation 
040 azimuth rotary table load 

shutdown 
040 pitch rotary table load -

rotation stop 
050 pitch rotary table load on 

055 pitch rotary table load 
shutdown 

005 azimuth rotary table load 
on 

010 azimuth rotary table load 
turntable reverse by 20 

degrees 
020 azimuth rotary table load 

turntable reverse by 20 
degrees 

030 azimuth rotary table load 
turntable reverse by 20 

degrees 
040 azimuth rotary table load 

turntable reverse by 20 
degrees 

050 azimuth rotary table load 
turntable reverse by 20 

degrees 
055 azimuth rotary table 
load—reverse rotation 

060 azimuth rotary table load 
rotation stop 

065 azimuth rotary table load 
shutdown 

Final state Azimuth angle 30 degrees 
Pitch angle 30 degrees 

Azimuth angle 30 degrees 
Pitch angle 30 degrees 

Azimuth angle 30 degrees 
Pitch angle 30 degrees 

7. Conclusions 
This study introduces the TOC concept, designed to fulfill spacecraft’s specific au-

tonomous operational needs in deep space exploration. Subsequently, we devise a task 
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scheduling strategy using the HTN-T algorithm aligned with this concept. This algorithm 
facilitates a paradigm shift for spacecraft operation, transitioning from the TOC’s objec-
tive-driven to behavior-driven processes. Furthermore, it enables the transformation of 
the TOC into primitive tasks that are directly executable, thereby producing granular 
scheduling results that spacecrafts can immediately implement. 

In this study, we conduct both principle and application verifications of the HTN-T 
algorithm. The results demonstrate its high scheduling success rate and operational effi-
ciency within acceptable time limits, effectively addressing autonomous task scheduling 
challenges for spacecrafts. Therefore, this research is of great significance to support the 
adaptive scientific exploration of spacecrafts and to improve the intelligent capability of 
spacecrafts. 

This research further explores diverse decomposition strategies for individual TOCs. 
However, challenges remain in real-world scenarios, particularly in mixed scheduling 
multiple TOCs and rescheduling these instructions in response to environmental and re-
source changes. At the same time, the autonomous generation of the TOC on spacecrafts 
is also a problem that needs to be solved, which is quite important to further improve the 
autonomy of spacecrafts in the future. Addressing these challenges constitutes the future 
trajectory and focus of our research. 

Author Contributions: Conceptualization, J.Z.; methodology, L.L.; software, J.Z.; validation, J.Z.; 
writing, J.Z. All authors have read and agreed to the published version of the manuscript. 

Funding: This work was supported by China’s Beijing Science and Technology Program, cultivated 
by the Space Science Laboratory of Beijing Huai rou Comprehensive National Science Center under 
grant Z201100003520006. 

Data Availability Statement: The data presented in this study are available on request from the 
corresponding author. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 
1. Cordell, G. Theorem Proving by Resolution as a Basis for Question-Answering Systems. Mach. Intell. 1969, 4, 183–205. 
2. John, M. Situations, Actions, and Causal Laws: Comtex Scientific; 1963. 
3. Fikes; Richard, E.; Nilsson, N.J. Strips: A New Approach to the Application of Theorem Proving to Problem Solving. Artif. Intell. 

1971, 2, 189–208. 
4. Howe, A.; Knoblock, C.; McDermott, I.S.D.; Ram, A.; Veloso, M.; Weld, D.; Sri, D.W.; Barrett, A.; Christianson, D. PDDL—The 

Planning Domain Definition Language. Tech. Rep. 1998, 1–27. 
5. Steve, C.; Smith, B.; Rabideau, G.; Muscettola, N.; Rajan, K. Automated Planning and Scheduling for Goal-Based Autonomous 

Spacecraft. IEEE Intell. Syst. Their Appl. 1998, 13, 50–55. 
6. Steve, C.; Sherwood, R.; Tran, D.; Cichy, B.; Rabideau, G.; Castano, R.; Davies, A.; Lee, R.; Mandl, D.; Frye, S. The Eo-1 Autono-

mous Science Agent. In Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Sys-
tems-Volume 1, New York, NY, USA, 19-23 July 2004. 

7. Steve, C.; Tran, D.; Rabideau, G.; Schaffer, S.; Mandl, D.; Frye, S. Timeline-Based Space Operations Scheduling with External 
Constraints. In Proceedings of the International Conference on Automated Planning and Scheduling, Nancy, France, 26–30 Oc-
tober 2020. 

8. Marie-Claire, C.; Pouly, J.; Bensana, E.; Lemaître, M. Testing Spacecraft Autonomy with Agata. In Proceedings of the 9th Inter-
national Symposium on Artificial Intelligence, Robotics and Automation in Space (ISAIRAS), Los Angeles, CA, USA, 1 January 
2008. 

9. Paul, M.; Schwabacher, M.; Dalal, M.; Fry, C. Embedding Temporal Constraints for Coordinated Execution in Habitat Automa-
tion. In Proceedings of the International Workshop on Planning and Scheduling for Space, Mountain View, CA, USA, 25–26 
March 2013. 

10. Johnston Mark, D. Spike: Ai Scheduling for Nasa’s Hubble Space Telescope. In Proceedings of the Sixth Conference on Artificial 
Intelligence for Applications, Santa Barbara, CA, USA, 5–9 May 1990. 

11. Jianshen, S.; Zhang, J.; Luo, Y. A Space Station Mission Replanning Method Based on a Deep Reinforcement Learning Algorithm. 
Manned Spacefl. 2020, 26, 469–476. 

12. Liu, Y. Algorithms and Simulation for Satellite Payload Planning and Scheduling. Master’s Thesis, Chinese Academy of Sciences 
(Space Science and Application Research Center), Beijing, China, 2004. 



Aerospace 2024, 11, 350 25 of 25 
 

 

13. Yao, M.; Zhao, M. Autonomous Scheduling Design for Small Satellite Missions Based on Fuzzy Neural Network. J. Astronaut. 
2007, 385–388+426,DOI: 10.3321/j.issn:1000-1328.2007.02.028. 

14. Martin, S.F.; Kennedy, B.; Mackey, R.; Troesch, M.; Altenbuchner, C.; Bocchino, R.; Fesq, L.; Hughes, R.; Mirza, F.; Nikora, A. 
Demonstrations of System-Level Autonomy for Spacecraft. In Proceedings of the 2021 IEEE Aerospace Conference (50100), Big 
Sky, Montana, USA, 6–13 March 2021. 

15. Jun, L.; Zhu, Y.-H.; Luo, Y.-Z.; Zhang, J.-C.; Zhu, H. A Precedence-Rule-Based Heuristic for Satellite Onboard Activity Planning. 
Acta Astronaut. 2021, 178, 757–772. 

16. Lyu, L. Design a Nd Application Study of Intelligent Flight Software Architecture on Spacecraft. Ph.D. Thesis. University of 
Chinese Academy of Sciences (National Space Science Center of Chinese Academy of Sciences), Beijing, China, 2019. 

17. Ilche, G.; Aiello, M. An Overview of Hierarchical Task Network Planning. arXiv 2014, arXiv:1403.7426. 
18. De Simone, C.F.; Ferreira, M.G.V.; de Novaes Kucinskis, F. An Extended Htn Language for Onboard Planning and Acting Ap-

plied to a Goal-Based Autonomous Satellite. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 32–50. 
19. Simon, G.; Shaya, E.; Rice, K.; Cooper, S.; Dunham, J.; Champion, J. Xtce: A Standard Xml-Schema for Describing Mission Op-

erations Databases. In Proceedings of the 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720) 2004, Big Sky, 
MT, USA, 6–13 March 2004. 

20. CCSDS. Ccsds 660.0-G-1 Xml Telemetric and Command Exchange (Xtce); CCSDS: Washington, DC, USA, 2007. 
21. ECSS. Telemetry and Telecommand Packet Utilization. ECSS-E-ST-70-41C; European Cooperation for Space Standardization: 

Noordwijk, The Netherlands, 2016. 
22. CCSDS. Space Packet Protocol: 133.0-B-2; CCSDS: Washington, DC, USA, 2020. 
23. Maullo, M.J.; Calo, S.B. Policy Management: An Architecture and Approach. In Proceedings of the 1993 IEEE 1st International 

Workshop on Systems Management 1993, Los Angeles, CA, USA, 14–16 April 1993. 
24. Coelho, C. Comparison of the Ccsds Mission Operations Services with the Packet Utilization Standard Services; 2014. 
25. Goldman Robert, P.; Kuter, U. Hierarchical Task Network Planning in Common Lisp: The Case of Shop3. In Proceedings of the 

ELS 2019, Genova, Switzerland, 1–2 April 2019. 
26. Wilkins, D.E. Using the Sipe-2 Planning System. Artificial Intelligence Center; SRI International: Menlo Park, CA, USA, 1999. 
27. Nau, D.S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J.W.; Wu, D.; Yaman, F. Shop2: An Htn Planning System. J. Artif. Intell. 

Res. 2003, 20, 379–404. 
28. Kautz, H.; Selman, B. Blackbox: A New Approach to the Application of Theorem Proving to Problem Solving. In Proceedings 

of the AIPS98 Workshop on Planning as Combinatorial Search 1998, Pittsburgh, PA, USA, 7 June 1998. 
29. Nau, D.; Cao, Y.; Lotem, A.; Munoz-Avila, H. Shop: Simple Hierarchical Ordered Planner. In Proceedings of the 16th Interna-

tional Joint Conference on Artificial Intelligence-Volume 2 1999, Stockholm, Sweden, 31 July–6 August 1999. 
30. Wu, D. Application Research on Spacecraft Based on Htn Planning Technology. Master’s Thesis, University of Chinese Academy 

of Sciences (National Space Science Center of Chinese Academy of Sciences), Beijing, China, 2019. 
31. Lyu, L.; He, R.; Zhang, J. Application Methods of Spacecraft Electronic Data Sheet. Spacecr. Eng. 2022, 31, 126–131. 
32. CCSDS. Space Packet Protocol. Ccsds 133.0-B-2: Blue Book; CCSDS: Washington, DC, USA, 2020. 
33. Wang, X.; Li, S. Research on Constraint Simplification and Mission Planning Method for Deep Space Explorer. J. Astronaut. 

2016, 37, 768–774. 
34. Lu, G.; Lyu, L.; Zhang, J. Design of Data Injection Tool Based on Ccsds Rasds Information Object Modeling Method. Spacecr. 

Eng. 2023, 32, 90–96. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 


	1. Introduction
	2. Related Work
	3. Objective-Driven and Task Objective Command
	4. Spacecraft Onboard Task Scheduling Method Based on HTN-T
	4.1. HTN
	4.2. Overview of the Methodology
	4.3. Spacecraft Domain Information Data Format Design
	4.3.1.Command Template Configuration Table
	4.3.2.Resource State Information Table

	4.4. Logical Constraint Planning Methods Based on HTN
	4.5. Timing Constraint Planning Method Based on Timeline
	4.6. Resource Constraint Planning Method Based on Conflict Elimination.

	5. Experimentation
	6. Application
	7. Conclusions
	References

